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Abstract

A general expression for the distribution of the potential in a finite one-dimensional array of arbitrary mesoscopic
tunnel junctions in terms of Green’s function is deduced. It is shown that the so-called partial “solitary” problem of
mesoscopic tunnel junctions can be formulated similarly to the problem of the behavior of a electron in an one-
dimensional tight binding and in a set of random delta-function models. We calculate analytically the potential
distribution of a finite chain, taking into account the details of the geometry, particularly, the finite-size distribution of
the metallic islands. It is shown that the knowledge of the potential distribution allows us, in principle, to calculate the
capacitance and by this the diameter of the islands as an isolated sphere. This reveals to have its significance for design
strategies of single electron devices particularly if chemically size tailored metal nanoparticles are used as building units.
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1. Introduction

Advances in chemistry allow the synthesis of sin-
gle-shape metal nanoparticles, the so-called ligand
stabilized metal clusters, consisting of a well-de-
fined number of metal atoms surrounded and by
this stabilized by an organic ligand shell [1, 2]. As
proposed recently, this metal clusters can be used to
build up a new generation of single electron devices
[3], consisting of a limited and well defined number
N of clusters separated by the thickness of the
dielectric ligand shells. Herein the metallic core and
its surrounding insulating shell replace the islands
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and tunnel junctions, respectively, by conventional
single-electron tunneling (SET) arrangements.

In one-dimensional arrays of mesoscopic tun-
nel junctions time and space correlations between
tunneling events may appear due to the Coulomb
blockade effect [4, 5]. The time oscillations of cor-
related single-clectron tunneling events, i.e. the so-
called charge soliton, can be counted very precisely
and can be used in practice for possible metrologi-
cal applications as well as for digital devices [6-9].
These arrays are usually fabricated by lithographic
techniques in which the typical size of the junction
is a few tens of nanometers. If chemical nanostruc-
tures are used to build up these kind of devices one
tends to a length scale of 1-2 nanometers, where
deviations in the number of atoms, which form the
metal cluster core, influence its size and shape and
therefore the form of the charge soliton.
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Originally, the charge-soliton propagation,
would take place in a homogeneous 1-D and infi-
nitely long array of identical junctions, where the
potential distribution does not change its form,
when an electron tunnels from one electrode to
another [4, 5, 10-13] This means that in an infinite
chain approximation the potential profile ¢!’ does
not depend on the number N of junctions in the
array. On the other hand, in some special devices
like the “SET-turnstile” and the “SET-pump”
[6, 7], the soliton can extend over approx. ¢-10
tunnel junctions and therefore enters the same scale
as the array itself. In this situation the main condi-
tion of the infinite array approach, ie. — NInll
> 1 (see Eq. (4)), is not satisfied. Then the finite
number of junctions becomes crucial and starts to
play an important role in the formation of the
potential profile.

The limits of validity of the infinite chain approx-
imation have been discussed in the recent papers by
Hu and O’Connell {14, 15]. They found an exact
solution for the charge soliton in the case of a finite
1-D array of N gated junctions with equal junction
capacitances C and equal gate capacitances C, and
as well as for a single-electron multi-junction trap.
The key to the approach was, on the one hand, to
adopt the semiclassical model to describe the 1-D
array [10] and, on the other hand, to rewrite the
charge conservation law and Kirchhoff’s laws as
equations for the island potentials {¢{”’"}, instead of
the island voltages {V;}.

Metal core Ligand shell

Electrode

U, Co —|— Co —l— Co T Co —:l—_co _—l:_CO _—[—Co

The purpose of this paper is to consider a finite
1-D array consisting of N small metal clusters with
a finite-size distribution, which are arranged in
series (see Fig. 1), and to find an exact analytical
solution for the potential distribution in terms of
Green’s function (GF). The GF approach enables us
to formulate the so-called partial “solitary” problem
of small mesoscopic tunnel junctions similar to the
problem of the behavior of an electron in an 1-D
tight binding and in a set of random delta-function
models. Applying this to the consideration of
metal-cluster arrays, the following discussion will
be performed with the assumption that the capa-
citance C is the same for all junctions whereas
the self-capacitance C, can fluctuate from site to
site due to a finite size distribution. Further, we
assume that the metal clusters have a continuous
density of states, i.e. we exclude quantum size effects
and its influence on the capacitance from our con-
sideration. Generally, this simplifications are not
necessary assumptions for the method discussed
here.

The paper is organized as follows. The GF of the
tight-binding model with a class of periodic Hamil-
tonians will be considered and is introduced in
Section 2. This method is a convenient way to des-
cribe the influence of substituting impurities onto
the energy spectrum in a perfect periodic lattice. In
the course of our consideration impurity has the
meaning of size variation and therefore deviation of
capacitance from the original value C, along the

Electrode

Fig. 1. Schematic drawing of N = 6 small metal clusters, fabricated in series and separated by the thickness of the dielectric ligand shells.
The capacitance C corresponds to the thickness of the ligand shells and is the same for all junctions. The self-capacitance Co, which
corresponds to the cluster size, can fluctuate from site to site due to a finite size distribution.
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linear chain of junctions. Some well-known results
concerning one and two impurities in terms of GF
are recalled in Section 3. In Section 4, we obtain
the analytical expression for the potential profile
for a finite 1-D array with two impurities in the case
of asymmetric biased electrodes.

2. Method of calculation

Before calculating the GF for a finite 1-D array,
we briefly explain the model of the infinite 1-D
array approach, where the soliton-like solution can
be described in the framework of the tridiagonal
model [10] as well as the tight-binding model with
a class of periodic Hamiltonians. In the tridiagonal
model for a 1-D array of N junctions the only
nonzero elements are the diagonal elements C; ; =
C,, which is representing the self-capacitance of
the islands, and the nearest-neighbor elements
Cii+1 = C, dominated by the tunnel-junction
capacitance.

The potential ¢{”’ can be described by the follow-
ing set of linear equations, which follow from the
charge conservation law

— Cpi2 + (2C + Co)p? — Col?, = Q;
for i=1,...,N—1 (1)

Here we assume that we know the electric charge
Q; = en; of all electrodes.

The partial “solitary” or single-charge soliton
solution of Eq. (1), where there is no charge on any
of the islands except that a single charge appears on
the kth island, i.e.

0: = ed;yx (2)

can be calculated explicitly. The potential of an arbi-
trary island i as a function of the distance from the
charged kth island and very far from the edges of
the array is given by [10]

o = & ik, 3)
& Ceff

Here II=(x—./x*—1), x=1+ Cy/2C and
C.r = /C3 + 4CCo. We note that the Eq. (3) is

correct in the limit
—NInll »1, 4

i.e. very far from the end of the array.

As for the differential equation for the matrix
GF, G(i,k) for the periodic tight-binding Hamil-
tonian operator in the case of a 1-D infinite linear
chain discretized into a lattice can be written in the
form [16]

)

Here we denote the off-diagonal matrix element
&;;+1 Of the periodic tight-binding Hamiltonian by
V and the diagonal matrix element ¢; ; by ¢¢ + 2V.
E is the energy and the indices i, k denote points on
a discrete lattice.

The GF for this class of periodic potentials can
be calculated exactly [16] and we have

1

JE — eo)* — 4V2
Xy — /¥ = 11474, ©)

where y = (E — ¢,)/2V and the upper index (0) of
GF indicates that the GF is calculated in the case
when the system is infinite.

Formally, the corresponding GF G'/(i, k; 0) and
therefore the potential ¢! of 1-D Poisson’s equa-
tion for the infinite chain of mesoscopic tunnel
junctions can be obtained from the Eq. (6) by
substituting E =0, V =C and ¢, = — (Co + 2C).
Then one has (in the following the parameter E = 0
will be omitted in the argument of Green’s function)

G, k; E) =

(0)
GO, k) =2, (7

e

where the ¢! is given by Eq. (3).

This kind of proportionality between the poten-
tial {® and GF follows directly also from the gen-
eral solution of Poisson’s equation expressed in
terms of the GF of the whole system through the
integral relation:

o(x)y= — 4an(x, x)p(x") dx'. (8)
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Really, as following from the integral equation
Eq. (8) with the assumption (2), as well as in the
case of discretized spatial coordinate, when the
Green’s function becomes a matrix G(i, k), the po-
tential ¢; ~ G(i, k).

So the calculation of the potential distribution
for the realistic geometry of a finite 1-D array is
reduced to the calculation of the Green’s func-
tion for the whole system, taking into account all
boundary effects.

To achieve this goal it is convenient to adopt the
method of contact Green’s function developed in
Refs. [17, 18]. This method has been applied to
various problems in solid-state physics before,
when the system considered is size limited, e.g. in
solids containing interfaces between different de-
fined crystals [19-21]. In this approach the first
step is the evaluation of GF between two semi-
infinite media, assuming that we know the GF of
each medium. In other words, the problem is for-
mulated in such a way as to be able to solve it with
allowance for one interaction and then taking into
account a second interaction without thereby
making any assumptions. Therefore, the problem
iteratively with arbitrary N + 1 boundaries can be
solved, considering the solution with N boundaries
to be known.

For the further consideration we introduce the
expression for the GF of an isolated and good
metallic conductor, ie. the left (right) electrode is
large enough to be considered as unbounded with
a self-capacitance C;(Cg). The corresponding ex-
pression for the diagonal GF G{°)(i, i) (i = L, R) of
the left (right) electrode follows directly from the
Eq. (7) under the condition that C; g » C

1

Note that if the Cpg— oc then G(L,L)
(GKXR, R)) tends to zero and this is the case of an
array with unbiased edges.

Before ending this section, we note that in the
recent paper by Likharev and Matsuoka [22], us-
ing the continuum limit approach, in which the
discrete periodic structure is replaced by a conti-
nous dielectric medium, it was shown that in the
three-dimensional electron—electron interaction

problem the spatial distribution of the electrostatic
potential of a long-linear array without a conduct-
ing ground plane does not depend strongly on the
details of the geometry of its islands. Eq. (5) of Ref.
[22], whose numerical integration yields authors to
the main results of the paper cited, can directly be
obtained from the Eq. (8) of this paper by integra-
tion with respect to the two-dimensional wave vec-
tor (Hankel’s transform).

3. Infinitely long array with one, two and N
impurities

To derive exact expressions for the potential dis-
tribution with many impurities labeled [; > [;_,
and j=1,..., N, we start from the periodic array
and modify the self capacitance in each site step by
step.

Let us start from the case when the 1-D perfect
periodic array of capacitance has been modified at
just one site (e.g. the /,) and the diagonal self-
capacitance C; equals C, + C;. C, can be negative
or positive. In the course of consideration of a clus-
ter array one cluster is replaced by a smaller or
larger one, respectively, at site [,. The complete GF,
which allows us to take into account this modifica-
tion at the site [, related to the unperturbed
GY (i, k) (Eq. (7)) and takes the form [16, 23]

G, 1,)Gy, k)
G(O)(lla ll) ’

—w <Lk< 4+ o0, (10)

G, k) = GO, k) + 1y

where

ClG(O)(lla ll)

- 7 11
1= C.GO, 1) (n

ry =

The quantity r; is well known from the theory of
tight binding and a set of delta function models
[16, 23]. This quantity, which is the complex ampli-
tude of the reflection of an electron from the single
impurity at a given site is model dependent. For
both, the tight-binding model and a set of delta
functions, we obtain

V;G(O)

— 12

r
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where V), is the Ith diagonal energy in the tight-
binding case, and the strength of the /th delta func-
tion in the other case. G'” (1, 1) is the unperturbed
GF for each case.

Although, in general, the real transport of elec-
trons in arrays is incoherent, nevertheless, a sim-
ilar formulation can be used for the soliton problem
and the quantity r; can be considered as the
reflection amplitude of a soliton passing the
capacitance C,. If C,, and therefore r, is zero
we have a homogeneous system without any soli-
ton’s reflection.

Using Eqgs. (7) and (10) we can rewrite the po-
tential of an arbitrary electrode i as a function of
the distance from the charged kth electrode in the
form

oY = @01 + r MKl (13)

where ¢!” and r, are given by Eqgs. (3) and (11),
respectively.

By use of Eq. (13) we examine the influence of
one impurity on the potential distribution in an
infinite 1-D array. This is illustrated in Fig. 2 for
a negative value of C;/Co = — 0.999, which means
that we decrease the size and by this the self-
capacitance of the island in /; (we choose this rela-
tion just for better graphical illustration). At large

1.0 +

G—© no impurity
®—@impurity at =2

o/(-e/C, )

L

0 . L . L . \ L \ .

0 -5 -4 -3 -2 -1 0 1 2 3 4 5
Position i

Fig. 2. Potential distribution of the infinite array in the units
of —e/Co and for one impurity at [, =2 with C,/Co =
—0.999.

distances, the function (Eq. (13)) approach the un-
perturbed single-electron soliton distribution
(Eq. (3)) while at small distances we have a second
peak which is located at site /,. In the reverse case
(not shown in Fig. 2), which means that the change
of capacitance is positive, i.e. the size of the island
is increased, we find a dip at site /,. Equipped
with this result, we regard again a chain of
ligand stabilized metal clusters. In this chain the
self-capacitance C, will directly be proportional
to the diameter of the metal core, if it is regarded as
a sphere. Therefore, the potential distribution in
both cases leads directly to the size of the modified
cluster at site [, or reverse, the size of the
cluster leads us directly to the potential profile of
the chain.

Now, let us modify second self-capacitance from
the right, i.e. at the site /,. The diagonal capacitance
C,Z equals Coy + C, and as in the case of the first
impurity C, can be negative or positive. The com-
plete GF, which allows us to take into account this
substituting of the host capacitance at the [, site,
and related to the unperturbed GY’ (i, k), Eq. (7)
can be written in the form [16, 23]

(1)¢; (1)1 k
G® (i, k) = G(“([, k) + R;G (i, 1)G 15, k)

GV (L)
Il < ia k < 125 (14)
where
Ry = C,G Wy ) 1ol +r122,0) (15)

11— CZG(U(129 l5) T 1- Fifalda ’

where R is the amplitude of the soliton’s reflection

from 2nd center; the arrow indicates the direction

of the soliton’s propagation. The quantity R dif-

fers from r, since it included also the impurity at

the point I,. The GV (i, k) is given by Eq. (10).
The quantity 4, ; in Eq. (15) is given by

G Ly, 1)G Uy, 1)
G(O)(127 lZ)G(O)(lh ll)

A1 =4Ai2= =" (16)

Here we use the explicit expression given by Eq. (7)
for the GG, k).

On the other hand, the expression for G2, k) for
i,k > 1, in terms of the bare GF G'°Xi, k) can be
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written in the form

Gi, L,)GAl,, k)
Gz, 1)

G2, k) = G, k) + R

= G, k(1 + Ry [IHF-2671k)y (1)

The unknown quantity RS can be obtained from
the condition of continuity of the new GF Eq. (17)
and GF Eq. (14) at the point i = [,. It is easy to
verify that the soliton’s reflection amplitude from
the right of two impurities is

¥y + rl(l + 2"2)}.2’1

-
RZ = 1 =
—T1F2Az

(18)

The expression for G'?(i, k) on the left side of two
impurities (i, k < [;) will be similar to the Eq. (17)
and can be obtained from Eq. (17) by substituting
I, = 14 in the expression G'°Xi, k) and by changing
the direction of propagation in Eq. (18) with 2 — 1.

G(O)(ia ll)G(O)(ll’ k)
G(O)(lh ll)

G, k) = G, k) + RY

= G, k)1 + RT 0471k (19)

L r (U +2r )y,
= : 20
Ry 1 —rirady, 20

The expression for the GF in the case, when we
have i<l <k <!, (i<ly <1, <k) we can find
using the relation connected electron’s GF for spa-
tial coordinate G(x, x') with the diagonal GF at the
coinciding coordinates x = x’ for one-dimensional
systems [24]

G(x, x') = [G(x, x) G(x', x')]'/?

max{x,x’) dZ }
XeXpy — : 21)
P { Jmin(x,x') 2G(Z, Z}
Following this relationship, it leads us to the ex-
pression of the GF

G2, k) = G, k\(lﬁJF ril + Fadi 2)

El

1— rer;.l.Z

i<l <k<l, (22)

Finally, for the GF in the intervals (i <!, and
I, < k) we have

(I +r Ml +ry)
1 - rlrzjul’z ’

G2, k) = GO, k) (23)

By using the Egs. (14), (17), (22) and (23) we have
the explicit form for the potential distribution over
the whole range of the array. We examine first the
case where both C; and C, are negative. The analy-
sis is of the behavior of the potential shows that
again the negative change of the self-capacitance
at both sites leads to peaks correspondingly. The
bigger the change of the self-capacitance the more
pronounced the peak.

Adding now a further impurity at the site /5 and
having written the condition of continuity for the
new GF at the point i = I5, we can evaluate the GF
in the region (I, < i, k < 13) and the amplitude of
reflection on the left R and right R3 of the new
boundary. Repeating this procedure N times we
can obtain the potential distribution ¢{™ for an
arbitrary interval of a whole system, which was our
intention.

As we see from our discussions the potential
distribution ¢; of the whole system is defined by the
potential of each interval of interest. In a given
interval (i < [, and Iy < k) the potential ¢{™ can be
presented in the form

e
CeffDN

™ _

— @

< (24)

where the Dy is the determinant of a tridiagonal
matrix N x N. The matrix elements of Dy is given
by

C _
(DN)nl = 511[ + Z?—LHIn 1

eff

(25)

and it satisfies the following recurrence relationship
D,=AD,-, — BD,_,. (26)

The index [ goes from 1 to the number of impurities
(islands) N and the initial conditions are:

C,

A, =1 ,
. +Ceff

D_,=0. 27)
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We have for | > 1:

C
A=14+B+—(1 -1 (28)
eff
and
C
B, =—-12.
o (29)

Let us consider the case when in an infinite 1-D
array we have a segment with N identical self-
capacitances, e.g. C, = Co+ C. Then the recur-
rence relationship (Eq. (26)) can be solved exactly

for Dy and Eq. (24) for the potential distribution
(¥)

@' can be rewritten as follows f(e.g at
i=0,k=N)
— ot =
e C .
{cosh(N p) + ( cosh(In IT) — sinh(In H))
eff Ceff
sinh(NB)] ~*
xsmmm} ’ (30)
where

cosh(f) = cosh(ln IT) — CC

eff

sinh(In ). (31)

We note that Eq. (31) is the analogous of the
electron’s energy spectrum equation for the 1-D
Kronig-Penney chain of identical and negative po-
tentials, rewritten for the negative value of energy.

4. Finite array with impurities

All expressions given by Egs. (14), (17), (22) and
(23) for the GF were found in the case of an infinite
array. In a real situation, i.e., in practice, the edge
electrodes of a finite system are biased with differ-
ent voltages. This means that in the case of a finite
chain the GF should be supplemented by these
boundary conditions. To do this we start to con-
sider the situation of two semi-infinite conductors
with general boundary conditions. We shall assume
that the left-hand half-space I, occupying the region
i, k < R,is characterized by the GF Eq. (17) and the
right-hand half-space II in the region i,k > R is
represented by the GF Eq. (9).

Using the method applied in Ref. [21] to the
“cooperon” problem in disordered metal films, we
can present the GF G(i,k) in the left-hand half-
space [ in the form

G?(i, R)GP(R, k)
GPR,R)

G, k) = G2(i, k) — 15

L<ik<R, 32)

and G'*(i, k) is given by Eq. (17). This is the expres-
sion for the potential distribution of left-hand halif-
infinite array with two impurities at the sites {,, [.
The quantity r,, is the relaxation amplitude for
a soliton passing from the region I into region II
and it can be written in the form

G(Z)(R5 R) - GS?)(R, R)
G?(R, R) + GR'(R, R)

(33)

Fi2= — T2 =

The first term on the right-hand side of the po-
tential distribution of the half-infinite array corres-
ponds to the direct propagation and the second
term to reflection from the boundary. In the limit
Cgr— oc (the region I is in a contact with the
unbiased edge) we find that r,, — 1. According to
Eq. (32), this means that GU(i, k) < G?(i, k), i.e.
there is a decreased probability to return to the
initial point, because the unbiased electrode can be
considered to be a big reservoir. In other words, the
unbiased edge of the array can be described as a
mirror, where the soliton will interact with his
mirror-image soliton (or anti-soliton) and therefore
will be attracted [13].

The analogous expression for the GF G™(i, k) in
the right-hand side of the biased left electrode (the
left-hand half-space 0) with the capacitance C; will
be similar to the Eq. (32). This expression in the
range R < i, k < [, can be obtained from Eq. (32)
by substituting R - L and 2 - 0:

G'3(i, LYG*(L, k)

GG, k) = G2, k) — ryo GOL.L)

R<i k<l (34)

and G'?)(i, k) is given by Eq. (19). The quantity ry, is
the relaxation amplitude for a soliton passing from
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the region I into region 0 and has the form

_ G(Z)(L’ L) - G(LO)(La L)
~ GH(L, L)+ GO(L, Ly

Fio = —To1 (35)

Finally, we show the expression for the ¢ in
the case when we have the left as well as the right
electrode biased, two impurities and [, <7, k < I3

(P(il) — (pEO)D* 1(1 +RFRFH2(12111) —Rf_IYi+k_21' —li—k}

_ anzlz‘i~k~|i'kl), (36)

where ¢!? is given by the Eq. (3). R} is the ampli-

tude of soliton reflection from the left block with
one impurity at site /; and with one left electrode
and it can be present in the form

(1 + r 21200

[+ 226D

(37)

R is the amplitude of soliton reflection from the
right block with one impurity at site [, and one
right electrode and it can be present in the form

(1 + r) [R5

R =ry+ e S A (38)
The quantity D® has the form
D=1—R{ R4, (39)

It is straightforward to show that setting Ry =
Ri =1 (ry=r,=0, rig=rio=1) and R=1,,
L =1, in Eq. (36) we obtain the result of Ref. [14]
for the single-charge soliton in a 1-D array of
N gated junctions.

In Fig. 3, where we plot the potential distribu-
tion of a finite array with two impurities at the sites
l;= —2 and [, = 2 illustrates the effect of two
electrodes at its edges. The larger the spatial separ-
ation between the biased electrodes and the corres-
ponding sites the smaller the influence onto the
potential distribution. This means that the soliton
solution Eq. (3) holds. But, even at large distances,
i.e. in long chains of clusters with L = — 40 and
R = 40, we see a pronounced influence. Dependent
on the bias of the electrode we can find a decrease
of potential, which is maximal in the unbiased case,
ie.r;;—1land rig— L

@@ infinite
1.0 »——-u finite at L=—-4, R=4 |
A—a finite at L=—40, R=40

o/(-e/C, )

-2 -1 0 1 2
Position i

Fig. 3. The potential distribution of the finite array in the units
of — ¢/Cy and for two impurities at [, = — 2, [, = 2 and differ-
ent values for L(= — R) with C{/Cy = — 0.999.

5. Discussion

We developed a general expression for the dis-
tribution of the potential in a finite 1-D array of
arbitrary mesoscopic tunnel junctions in terms of
Green’s function. This was applied to the consid-
eration of a finite array consisting of ligand stabil-
ized metal clusters. Herein the capacitance C, which
corresponds to the inter cluster spacing, i.e. the
thickness of the ligand shell, is kept constant, and
the self-capacitance Cy, which corresponds to the
cluster size, may change from site to site. The so-
called partial “solitary” problem of mesoscopic
tunnel junctions was formulated similarly to the
problem of the behavior of an electron in a one-
dimensional tight binding and in a set of random
delta-function models. The potential distribu-
tion was calculated analytically for asymmetric
biased electrodes, taking into account the size dis-
tribution of the islands along the array. It is shown
that from the potential distribution the size vari-
ation of the spherical islands can be obtained dir-
ectly. This reveals to have its significance for design
strategies and quality control of single-electron de-
vices, which are built up by chemically tailored
metal clusters. By the knowledge of the influence of
size distribution on the potential distribution, as
described here, as well as on conductance peak
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spacing [25], electrical characteristics of multijunc-
tion arrays may be foreknown.
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